On the least squares estimator in a nearly unstable sequence of stationary spatial AR models
نویسندگان
چکیده
A nearly unstable sequence of stationary spatial autoregressive processes is investigated, when the sum of the absolute values of the autoregressive coefficients tends to one. It is shown that after an appropriate norming the least squares estimator for these coefficients has a normal limit distribution. If none of the parameters equals zero than the typical rate of convergence is n. AMS 2000 subject classifications. Primary 62M10; Secondary 62F12
منابع مشابه
Title : ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR ( p ) PROCESSES
In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behaviour of the least squares estimators of the coefficients. A convergence result is presented for the general complex-valued case. The limit distribution is given by the help of some continuous time AR processes. We appl...
متن کاملAsymptotic Inference for Nearly Unstable Inar(1) Models
The first–order integer–valued autoregressive (INAR(1)) process is investigated, where the autoregressive coefficient is close to one. It is shown that the limiting distribution of the conditional least–squares estimator for this coefficient is normal and, in contrast to the familiar AR(1) process, the rate of convergence is n. Finally, the nearly critical Galton–Watson process with unobservabl...
متن کاملTesting stability in a spatial unilateral autoregressive model
Least squares estimator of the stability parameter ̺ := |α|+ |β| for a spatial unilateral autoregressive process Xk,l = αXk−1,l +βXk,l−1 +εk,l is investigated and asymptotic normality with a scaling factor n5/4 is shown in the unstable case ̺ = 1. The result is in contrast to the unit root case of the AR(p) model Xk = α1Xk−1+ · · ·+αpXk−p+εk, where the limiting distribution of the least squares e...
متن کاملAsymptotic inference for an unstable triangular spatial AR model
A spatial autoregressive process is investigated, where the autoregressive coefficients are equal, and their sum is one. It is shown that the limiting distribution of the least squares estimator for this coefficient is normal and, in contrast to the doubly geometric process, the rate of convergence is n−5/4.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009